Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

2-Phenylmalonamide

Jun Sakamoto et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

 $\ \, \bigcirc$ 2000 International Union of Crystallography • Printed in Great Britain – all rights reserved

Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

2-Phenylmalonamide

Jun Sakamoto, a* Takashi Nakagawa, a Nobuko Kanehisa, b Yasushi Kai^b and Masahiro Katsura a

^aDepartment of Nuclear Engineering, Graduate School of Engineering, Osaka University, Yamada-Oka 2-1, Suita, Osaka 565-0871, Japan, and ^bDepartment of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-Oka 2-1, Suita, Osaka 565-0871, Japan

Correspondence e-mail: jsaka@nucl.eng.osaka-u.ac.jp

Received 7 August 2000 Accepted 29 August 2000

Data validation number: IUC0000234

In the title compound, $C_9H_{10}N_2O_2$, the amide groups are rotated out of the $C(ONH_2)-C(HPh)-C(ONH_2)$ plane by ca 25–47° and the phenyl ring is almost perpendicular to this plane. The crystal structure is stabilized by intra- and intermolecular $N-H\cdots O$ hydrogen bonds.

Comment

The malonamides have the stronger extracting capacity than other diamides, which is due to the larger electron delocalization and the higher chelating abilities of malonamides (Siddall & Good, 1967). The title malonamide derivative, (I), had been synthesized with the aim of studying its lipophilic suitability as an extractant.

$$\begin{array}{c|c} & & & \\ & & & \\ H_2N & & & \\ & & & \\ O & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

In the crystal, the amide N atoms are involved in intra- and intermolecular hydrogen bonds (Table 2). These hydrogen bonds form eight-membered $[R_2^6(8)]$ and 16-membered $[R_8^6(16)]$ hydrogen-bonded rings. These rings link the molecules into an infinite three-dimensional network.

Experimental

A suspension of diethyl phenylmalonate and NH_3 solution was refluxed for 1 week with vigorous stirring. Crystals of (I) were obtained by slow evaporation of an ethanol solution.

Crystal data

$C_9H_{10}N_2O_2$	$D_x = 1.367 \text{ Mg m}^{-3}$
$M_r = 178.19$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 25
a = 9.079 (2) Å	reflections
b = 7.555 (2) Å	$\theta = 14.6 - 15.0^{\circ}$
c = 13.015 (2) Å	$\mu = 0.099 \text{ mm}^{-1}$
$\beta = 104.10 \ (1)^{\circ}$	T = 296.2 K
$V = 865.8 (3) \text{ Å}^3$	Prismatic, colorless
Z=4	$0.20\times0.20\times0.10~\text{mm}$

Data collection

Rigaku AFC-5R diffractometer	$h = 0 \rightarrow 11$
ω –2 θ scans	$k = -9 \rightarrow 0$
2275 measured reflections	$l = -16 \rightarrow 16$
1994 independent reflections	3 standard reflections
1347 reflections with $I > 2\sigma(I)$	every 150 reflections
$R_{\rm int} = 0.016$	intensity decay: 2%
$\theta_{\text{max}} = 27.5^{\circ}$	

Refinement

Refinement on F^2	All H-atom parameters refined
R(F) = 0.038	$w = 1/[\sigma^2(F_o^2) + \{0.050[\text{Max}(F_o^2, 0)]\}$
$wR(F^2) = 0.104$	$+2F_c^2]/3\}^2$
S = 1.23	$(\Delta/\sigma)_{\text{max}} = 0.0039$
1658 reflections	$\Delta \rho_{\text{max}} = 0.54 \text{ e Å}^{-3}$
158 parameters	$\Delta \rho_{\min} = -0.22 \text{ e Å}^{-3}$

Table 1 Selected geometric parameters (Å, °).

O1-C1	1.230(2)	C1-C2	1.535 (2)
O2-C3	1.237 (2)	C2-C3	1.528 (2)
N1-C1	1.321(2)	C2-C4	1.530(2)
N2-C3	1.324 (2)		
C1-C2-C3	115.0 (1)		

Table 2 Hydrogen-bonding geometry (Å, °).

D $ H$ $\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$N1-H6\cdots O2$	0.87 (3)	2.03 (3)	2.723 (2)	136 (2)
$N1-H7\cdots O1^{i}$	0.85 (3)	2.14 (3)	2.978 (2)	167 (2)
$N2-H8\cdots O2^{ii}$	0.91 (2)	2.13 (2)	3.027 (2)	168 (2)
$N2-H9\cdots O1^{iii}$	0.95 (2)	2.04 (2)	2.9753 (19)	167.1 (15)

Symmetry codes: (i) -1 - x, -y, -z; (ii) -x, -1 - y, -z; (iii) $-\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$.

All the H atoms were located from the difference Fourier map and were refined isotropically. The C—H range is 0.94 (2)–1.02 (2) Å and the N—H range is 0.85 (2)–0.94 (2) Å.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

electronic papers

References

- Altomare, A., Cascarano, M., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Molecular Structure Corporation (1990). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation & Rigaku Corporation (1999). *TEX-SAN*. Version 1.10. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
- Siddall, T. H. & Good, M. L. (1967). J. Inorg. Nucl. Chem. 29, 149–158.